4-7 Transforming Formulas Objective: To transform a formula.

Solve the formula F = ma for m. State the restrictions, if any, for the formula Example 1

Solution

obtained to be meaningful. To get m alone on one side, divide both sides by a.

$$\frac{F}{a} = m, a \neq 0$$
 The denominator cannot be 0.

restrictions, if any, for the formula obtained to be meaningful. 1. $C = \pi d$ for d $d = \frac{C}{\pi}$

Solve the given formula for the indicated variable. State the

2.
$$F = ma$$
 for $a = \frac{F}{m}$; $m \neq 0$

3. $I = prt \text{ for } t \ t = \frac{1}{pr}; \ p \neq 0, \ r \neq 0$ 4. $V = Bh \text{ for } h \ h = \frac{V}{B}; \ B \neq 0$

5.
$$d = rt$$
 for t $t = \frac{d}{r}$; $r \neq 0$

$$p \neq 0, r \neq 0$$
4. $r = Br \text{ for } R = \frac{s}{R}; t \neq 0$
 $\neq 0$
6. $s = gt^2 \text{ for } g = \frac{s}{t^2}; t \neq 0$

Example 2 The formula
$$A = \frac{1}{2}h(a+b)$$
 gives the area of a trapezoid with bases a units and b units and with height h units. Use this formula to solve for the variable b in terms of A, h, and a. State the restrictions, if any, for the formula obtained to be meaningful.

 $A = \frac{1}{2}h(a+b)$ To get clear of fractions, multiply both sides by 2. Solution 2A = h(a+b)Divide both sides by h. $\frac{2A}{b} = a + b$ Subtract a from both sides.

$$\frac{2A}{h} - a = b, h \neq 0$$
 The denominator cannot be 0.

restrictions, if any, for the formula obtained to be meaningful.

Arrictions, it any, for the formula obtained to be meaningful.

A =
$$\frac{1}{2}bh$$
 for h h = $\frac{2A}{b}$; $b \neq 0$

8. $b = 2b + y$ for y $y = -b$

restrictions, if any, for the formula obtained to be meaningful.

7.
$$A = \frac{1}{2}bh$$
 for h $h = \frac{2A}{b}$; $b \neq 0$

8. $b = 2b + y$ for

9.
$$A = \frac{1}{2}h(b+c)$$
 for $h = \frac{2A}{b+c}$; $b \neq -c10$. $A = P + Prt$ for $r = \frac{A-P}{Pt}$; $P \neq 0$, $t \neq 0$

9.
$$A = \frac{1}{2}h(b+c)$$
 for $h = \frac{2h}{b+c}$; $b \neq -c10$. $A = P + PR$ for $P = \frac{2h}{b+c}$.
11. $a = 2(l+w)$ for $l = \frac{a-2w}{2}$ 12. $C = \frac{5}{9}(F-32)$ for $F = \frac{9C+160}{5}$

Example 3 Solve the formula
$$C = \frac{mv^2}{r}$$
 for r. State the restrictions, if any, for the formula obtained to be meaningful.

 $C = \frac{mv^2}{r}$ Solution

 $r = \frac{mv^2}{C}, C \neq 0$

 $Cr = mv^2$

4-7 Transforming Formulas (continued)

To get
$$r$$
 out of the denominator, multiply both sides by r .

To get r alone on one side, divide both sides by C .

The denominator cannot be 0 .

Solve the given formula for the indicated variable. State the

13.
$$s = \frac{v}{r}$$
 for $v = rs$

14.
$$d = \frac{m}{v}$$
 for $m = dv$

15.
$$C = \frac{mv^2}{v^2}$$
 for $m \frac{Cr}{v^2} = m$, $v \neq 0$
16. $2ax + 1 = ax + 5$ for $x = \frac{4}{a}$, $a \neq 0$

17.
$$a = \frac{v - u}{t}$$
 for $u = v - at$, $t \neq 0$ 18. $v^2 = u^2 + 2as$ for $a = \frac{v^2 - u^2}{2s}$, $s \neq 0$

16.
$$2ax + 1 = ax + 5$$
 for

19.
$$S = \frac{n}{2}(a + 1)$$
 for $a = \frac{2S - n}{n}$, $n \neq 0$ 20. $m = \frac{x + y + z}{3}$ for $x = 3m - y - z$

21.
$$l = a + (n-1)d$$
 for d $d = \frac{l-a}{n-1}$, $n \ne 1$ 22. $A = \frac{a+b+c+d}{4}$ for b

23.
$$3by - 2 = 2by + 1$$
 for $b = \frac{3}{y}$, $y \neq 0$ 24. $3aw + 1 = aw - 7$ for $a = -\frac{4}{w}$, $w \neq 0$ 25. $ax + b = c$ for $b = c - ax$ 26. $D = \frac{a}{2}(2t - 1)$ for $a = \frac{2D}{2t - 1}$, $t \neq \frac{1}{2}$ 27. $am - bm = c$ for $a = \frac{bm + c}{m}$, $m \neq 0$ 28. $q = 1 + \frac{P}{100}$ for $P = 100$ $q - 100$

Mixed Review Exercises

5. $3x(x^2 - 2x + 3)$ $3x^3 - 6x^2 + 9x$

Simplify.

7. $n^2 \cdot n^3 \cdot n^4 n^9$

65

4. $xy(x - 2y) x^2y - 2xy^2$

6. $(-4x^2)^3$ - 64x⁶

10. $(a + 2b)ab \ a^2b + 2ab^2$

9. $(x + 6)(x - 5) x^2 + x - 30$ 12. $2v^2(v^3 + 2v - 1)$ $2v^5 + 4v^3 - 2v^2$ 11. (4m + 5)(8m + 7) 32m² + 68m + 35